We are made of star stuff.

Dame Susan Jocelyn Bell Burnell1

1Oxford University

In this talk I will consider how the nuclei of atoms such as C, O, Ca, Fe (along with some heavier nuclei such as gold) are created in the cosmos and come to be in our bodies.
Exponential velocity profile of granular flows down a confined heap

E. Martinez¹, A. Gonzalez-Lezcano², A. J. Batista-Leyva³, E. Altshuler¹

¹Group of Complex Systems & Statistical Physics, Physics Faculty, University of Havana, Cuba
²Physics Department, University of Pinar del Rio, Cuba
³Instituto Superior de Tecnologias y Ciencias Aplicadas, La Havana, Cuba

Understanding how small systems exchange energy with a heat bath is important to describe how their unique properties can be affected by the environment. We show how Landsberg's theory of temperature-dependent energy levels can describe the progressive thermalization of small systems as their spectrum is perturbed by a heat bath. We propose a mechanism whereby the system undergoes a discrete series of excitations and isentropic spectrum adjustments leading to a final state of thermal equilibrium. This produces standard thermodynamic results without invoking system size. The thermal relaxation of a single harmonic oscillator is analyzed as a model example of a system with a quantized spectrum than can be embedded in a thermal environment. A description of how the thermal environment affects the spectrum of a small system can be the first step in using environmental factors, such as temperature, as parameters in the design and operation of nanosystem properties.