
GreenBST: Energy-Efficient

Concurrent Search Tree

Ibrahim Umar, Otto J. Anshus,
Phuong H. Ha

Arctic Green Computing Lab

Department of Computer Science

UiT The Arctic University of Norway

Outline of the talk

Background

GreenBST: Energy-efficient concurrent search
tree

Evaluation

Conclusion

2Euro-Par 2016 (Aug. 22-26), Greenoble, France

BACKGROUND

3Euro-Par 2016 (Aug. 22-26), Greenoble, France

Motivation

 The energy consumption of computing systems are mostly
dominated by the cost of data movement [1]

 Data locality in finer-granularity can bring greater energy
savings to computing systems [2]

 Fine grained locality: not only between CPU and RAM, but between
memory hierarchies inside the CPU (L1 cache, L2C, L3C, ...)

 It is important for future data structures and algorithms to
utilize fine-grained data locality and concurrency

4Euro-Par 2016 (Aug. 22-26), Greenoble, France

[1] J. Choi, M. Dukhan, X. Liu and R. Vuduc, "Algorithmic Time, Energy, and Power on Candidate HPC Compute Building Blocks," Parallel
and Distributed Processing Symposium, IPDPS 2014, pp. 447-457
[2] Dally, B.: Power and programmability: The challenges of exascale computing. In: DoE Arch-I presentation (2011)

Fine-grained data locality is an

opportunity

 28nm

 10nm

5

20mm

Bulk of data should be accessed from nearby memories (2pJ),
not across the chip (150pJ), off chip (300pJ) or across the
system (1nJ) [2]

Source: Bill Dally,

DoE Arch-I’11

“Power and

Programmability”

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Fine-grained data locality on multiple

platforms

6

Disk

RAM

L3C

L2C

L1C

SSD

RAM

L2C

L1C

Flash

RAM

L1C

Platform A Platform B Platform C
Euro-Par 2016 (Aug. 22-26), Greenoble, France

For multiple
platforms,
HOW…???

(CC BY-SA 2.0) Peter (https://www.flickr.com/photos/12023825@N04/2898021822)

Optimize data structure and algorithm

based on:

7Euro-Par 2016 (Aug. 22-26), Greenoble, France

Be oblivious =

Cache oblivious!

The cache-oblivious model

 Block transfers dominates the execution time

 Goal: minimize the number of data block transfers

 Cache-oblivious (CO) model [3]

 Cache size M and block size B are unknown

 Analysis for 2-level memory is applicable for unknown

multilevel memory (register, L1C, L2C, … ,LLC, memory).

8

RAM
Cache

Data

M
?

B ?

[3] Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In: Proc. 40th Annual Symp. Foundations of
Computer Science. p. 285. FOCS ’99 (1999)

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Search trees

 Search trees are one of the important data structure for
High Performance Systems (HPC)

 Example usage:

 Databases (PostgresSQL, CouchDB)

 Filesystems (Btrfs, F2FS)

 Schedulers (the Completely Fair Scheduler (CFS))

 Energy-efficient search tree is a step towards an energy-
efficient system

9Euro-Par 2016 (Aug. 22-26), Greenoble, France

Repeat
recursively

Cache-oblivious search trees:

The van Emde Boas (vEB) layout

 CO model: van Emde Boas layout [4, 5]

 Search: O(logBN) data transfers (I/Os), where B is
unknown
 Cons: Inherently sequential during update, no fine-grained locking

10

h
X

Y1 Ym

… h/2

h/2

X Y1 Y2 Ym…

[4] Prokop, H.: Cache-oblivious algorithms. Master’s thesis, MIT (1999)
[5] van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In: Proc. 16th Annual Symp. Foundations
of Computer Science. pp. 75–84. SFCS ’75 (1975)

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Fine-grained data locality:
multilevel memory benefits more

 The BFS layout tree has O(log2N)
I/O complexity (vs. vEB w/O(logBN))
 The vEB layout has log2B less I/O

than BFS layout between 2 levels of
memory

 Commodity machines, e.g.,
 Tree node size: 4B

 Page size: 4KB

 Cache line: 64B

 Maximum of 640x less I/O for all
levels (intuitively)

11

Disk

RAM

LLC

L2C

L1C

B1= 64B/4B = 16
nodes/block => 4x

B2=16 => 4x

B3=16 => 4x

B4=1024 => 10x

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Locality-aware concurrent search

tree: DeltaTree [Sigmetrics’15]

 A novel relaxed cache-oblivious model based on the
cache-oblivious model, but suitable for high-
concurrency algorithms

 We transform the van Emde Boas (vEB) layout for
search trees into a novel concurrency-aware vEB layout
 The layout benefits concurrent updates, unlike the original

vEB layout

 We devise DeltaTree, a novel practical locality-aware
concurrent search tree
 DeltaTree search, Insert & Delete: O(logBN) I/O complexity,

where B is unknown, but upper bound (UB) is known

12Euro-Par 2016 (Aug. 22-26), Greenoble, France

DeltaTree structure

13Euro-Par 2016 (Aug. 22-26), Greenoble, France

DeltaTree is energy-efficient [PPoPP’16]

 Through experiments we documented the energy
efficiency and throughput of DeltaTree and other state-
of-the-art trees:
1. CBTree, prominent locality-aware concurrent B+tree [6]

2. BSTTK, portably scalable concurrent search tree [7]

3. LFBST, non-blocking binary search tree [8]

 DeltaTree energy-efficiency is better than state-of-the-
art for the search-intensive workloads by up to 24%

14Euro-Par 2016 (Aug. 22-26), Greenoble, France

[6] Lehman, P.L., Yao, s.B.: Efficient locking for concurrent operations on b-trees. ACM Trans. Database Syst. 6(4), 650–670 (Dec 1981)
[7] David, T., Guerraoui, R., Trigonakis, V.: Asynchronized concurrency: The secret to scaling concurrent search data structures. In:
Proc. 12th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems. pp.
631–644. ASPLOS ’15 (2015)
[8] Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: Proc. 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. pp. 317–328. PPoPP ’14 (2014)

However, …

 DeltaTree’s energy efficiency and throughput is low in
the update-intensive workloads

 Overhead of DeltaTree’s maintenance operations

15Euro-Par 2016 (Aug. 22-26), Greenoble, France

DeltaTree maintenance operation

 Rebalance, a maintenance operation that is required to
keep DeltaTree in a good shape
 Low height

 Space saving

 However, this is DeltaTree’s biggest operational
overhead because it rearranges the whole UB-sized
tree (DeltaNode)

16Euro-Par 2016 (Aug. 22-26), Greenoble, France

GreenBST

17Euro-Par 2016 (Aug. 22-26), Greenoble, France

GreenBST

 We devised GreenBST, a new fine-grained locality
aware concurrent tree

 GreenBST is based on DeltaTree with two significant
improvements:

1. We reduce the DeltaTree memory footprint by using
heterogeneous tree layout

2. We reduce the number of memory transfer in DeltaTree
maintenance operations

18Euro-Par 2016 (Aug. 22-26), Greenoble, France

1) Heterogeneous tree layout

 All DeltaTree’s UB-sized nodes are using the leaf
oriented (or external tree) layout
 All keys are at the leaves

 Size is 2 x # of keys

 Required to link to other nodes

19Euro-Par 2016 (Aug. 22-26), Greenoble, France

1) Heterogeneous tree layout (cont.)

Non-leaf oriented /
internal tree layout

Leaf oriented /
external tree layout

20Euro-Par 2016 (Aug. 22-26), Greenoble, France

Tree filled with 1, 2, … , 7 keys

1) Heterogeneous tree layout (cont.)

 However, the leaf UB nodes do not need to link to other
nodes

 Use the internal tree layout

 Less memory transfer

during rebalancing

 Save 25% of space

 Faster search

21Euro-Par 2016 (Aug. 22-26), Greenoble, France

2) Incremental rebalance

 We define: density(w)= #of keys inside
subtree rooted at w/max. keys inside the

subtree

 Density is calculated after insertion and back-tracks to
predecessor nodes

 For example, a subtree w with height 3 and is only filled with
3 keys, then density(w) = 3/(23 – 1) = 0.42

 There is also a density threshold 0 < Γ1 < Γ2 < … < ΓH ,
where H is the tree height

 We only rebalance a subtree w, where density(w) ≤
Γdepth(w), following [9]

22Euro-Par 2016 (Aug. 22-26), Greenoble, France

[9] Brodal, G.S., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary trees of small height. In: Proc. 13th ACM-SIAM Symp.
Discrete algorithms. pp. 39–48. SODA ’02 (2002)

2) Incremental rebalance (cont.)

23Euro-Par 2016 (Aug. 22-26), Greenoble, France

Newly inserted node
w

w
height

w
depth

rebalance

EVALUATION

24Euro-Par 2016 (Aug. 22-26), Greenoble, France

Evaluation setup

 We measured the energy efficiency and throughput of
operations of several state-of-the art trees on multiple
architectures

25Euro-Par 2016 (Aug. 22-26), Greenoble, France

Algorithm Description Published

SVEB Conventional vEB layout search tree SODA’02

CBTree Concurrent B-tree (B-link tree) TODS’81

Citrus RCU-based search tree PODC’14

LFBST Non-blocking binary search tree PPoPP’14

BSTTK Portably scalable concurrent search tree ASPLOS’15

DeltaTree Locality aware concurrent search tree -

GreenBST Improved locality aware concurrent search tree -

Evaluation setup (cont.)

 Platforms used:

 HPC platform (24 core 2× Intel Xeon E5-2650Lv3 CPU with
64GB of RAM)

 ARM platform (8 core Odroid XU+E, Samsung Exynos 5410
CPU with 2GB of RAM)

 MIC platform (with 57 core Intel Xeon Phi 31S1P with 6GB of
RAM)

We run 5 million operations with 100% and 50% search
after initial loading

26Euro-Par 2016 (Aug. 22-26), Greenoble, France

Energy efficiency (HPC platform)

27

49%

50%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

20%

2.4X

Throughput (HPC platform)

28

100% Search 50% Search

42%
40%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

2.2X

20%

Energy efficiency (ARM platform)

29

61% 65%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

10% 3X

Throughput (ARM platform)

30

100% Search 50% Search

54%

69%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

15% 3X

Energy efficiency (MIC platform)

31

67%

50%

15%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

15%

2X

Throughput (MIC platform)

32

100% Search 50% Search

54%

69%

5%

53%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

15%
75%

LLC-DRAM data transfer on the HPC

platform

33

GreenBST transfers less data from/to DRAM than the other trees

1/8x

Euro-Par 2016 (Aug. 22-26), Greenoble, France

HPC Platform: The tree memory footprint

after the initial loading into memory

 GreenBST size 0.4x of BSTTK

 However, I/O can be 0.12x (i.e., GreenBST vs BSTTK in 100%
search using 57 cores)

 GreenBST re-uses more data than the other trees

34Euro-Par 2016 (Aug. 22-26), Greenoble, France

LLC-DRAM data transfer on the HPC platform

(normalized, relative to the tree memory

footprint)

35Euro-Par 2016 (Aug. 22-26), Greenoble, France

L2 cache miss on the MIC platform

36

GreenBST has fewer L2 misses than the other trees, except SVEB

when using single core

1/2x

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Vacation benchmark from Stanford

STAMP [12]

37

42%

GreenBST needs 42% less time to finish the benchmark and 41% less

energy to finish the benchmark

41%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

[12] Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional applications for multi-processing. In:
Workload Characterization, 2008. IISWC 2008. IEEE International Symposium on. pp. 35–46 (Sept 2008)

CONCLUSION

38Euro-Par 2016 (Aug. 22-26), Greenoble, France

Conclusions

 GreenBST is the first portable energy-efficient
concurrent search tree (see paper for the source code link)

 There are tradeoffs for using cache-obliviousness in
data structures:

1. On multi-CPU and many cores systems, data-structures’ locality-
awareness can easily saturates the CPU interconnect bandwidth (e.g.,
Xeon’s QPI and MIC’s ring interconnect)

1. Higher interconnect bandwidth or novel data access pattern
strategies for the cache-oblivious data structures for multi-CPU and
many cores systems are needed

1. Otherwise, multi-CPU coherency mechanism energy overhead can
exceed the energy saving obtained by fewer data movements.

39

13

Euro-Par 2016 (Aug. 22-26), Greenoble, France

THANK YOU

40Euro-Par 2016 (Aug. 22-26), Greenoble, France

