
GreenBST: Energy-Efficient

Concurrent Search Tree

Ibrahim Umar, Otto J. Anshus,
Phuong H. Ha

Arctic Green Computing Lab

Department of Computer Science

UiT The Arctic University of Norway

Outline of the talk

Background

GreenBST: Energy-efficient concurrent search
tree

Evaluation

Conclusion

2Euro-Par 2016 (Aug. 22-26), Greenoble, France

BACKGROUND

3Euro-Par 2016 (Aug. 22-26), Greenoble, France

Motivation

 The energy consumption of computing systems are mostly
dominated by the cost of data movement [1]

 Data locality in finer-granularity can bring greater energy
savings to computing systems [2]

 Fine grained locality: not only between CPU and RAM, but between
memory hierarchies inside the CPU (L1 cache, L2C, L3C, ...)

 It is important for future data structures and algorithms to
utilize fine-grained data locality and concurrency

4Euro-Par 2016 (Aug. 22-26), Greenoble, France

[1] J. Choi, M. Dukhan, X. Liu and R. Vuduc, "Algorithmic Time, Energy, and Power on Candidate HPC Compute Building Blocks," Parallel
and Distributed Processing Symposium, IPDPS 2014, pp. 447-457
[2] Dally, B.: Power and programmability: The challenges of exascale computing. In: DoE Arch-I presentation (2011)

Fine-grained data locality is an

opportunity

 28nm

 10nm

5

20mm

Bulk of data should be accessed from nearby memories (2pJ),
not across the chip (150pJ), off chip (300pJ) or across the
system (1nJ) [2]

Source: Bill Dally,

DoE Arch-I’11

“Power and

Programmability”

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Fine-grained data locality on multiple

platforms

6

Disk

RAM

L3C

L2C

L1C

SSD

RAM

L2C

L1C

Flash

RAM

L1C

Platform A Platform B Platform C
Euro-Par 2016 (Aug. 22-26), Greenoble, France

For multiple
platforms,
HOW…???

(CC BY-SA 2.0) Peter (https://www.flickr.com/photos/12023825@N04/2898021822)

Optimize data structure and algorithm

based on:

7Euro-Par 2016 (Aug. 22-26), Greenoble, France

Be oblivious =

Cache oblivious!

The cache-oblivious model

 Block transfers dominates the execution time

 Goal: minimize the number of data block transfers

 Cache-oblivious (CO) model [3]

 Cache size M and block size B are unknown

 Analysis for 2-level memory is applicable for unknown

multilevel memory (register, L1C, L2C, … ,LLC, memory).

8

RAM
Cache

Data

M
?

B ?

[3] Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In: Proc. 40th Annual Symp. Foundations of
Computer Science. p. 285. FOCS ’99 (1999)

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Search trees

 Search trees are one of the important data structure for
High Performance Systems (HPC)

 Example usage:

 Databases (PostgresSQL, CouchDB)

 Filesystems (Btrfs, F2FS)

 Schedulers (the Completely Fair Scheduler (CFS))

 Energy-efficient search tree is a step towards an energy-
efficient system

9Euro-Par 2016 (Aug. 22-26), Greenoble, France

Repeat
recursively

Cache-oblivious search trees:

The van Emde Boas (vEB) layout

 CO model: van Emde Boas layout [4, 5]

 Search: O(logBN) data transfers (I/Os), where B is
unknown
 Cons: Inherently sequential during update, no fine-grained locking

10

h
X

Y1 Ym

… h/2

h/2

X Y1 Y2 Ym…

[4] Prokop, H.: Cache-oblivious algorithms. Master’s thesis, MIT (1999)
[5] van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In: Proc. 16th Annual Symp. Foundations
of Computer Science. pp. 75–84. SFCS ’75 (1975)

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Fine-grained data locality:
multilevel memory benefits more

 The BFS layout tree has O(log2N)
I/O complexity (vs. vEB w/O(logBN))
 The vEB layout has log2B less I/O

than BFS layout between 2 levels of
memory

 Commodity machines, e.g.,
 Tree node size: 4B

 Page size: 4KB

 Cache line: 64B

 Maximum of 640x less I/O for all
levels (intuitively)

11

Disk

RAM

LLC

L2C

L1C

B1= 64B/4B = 16
nodes/block => 4x

B2=16 => 4x

B3=16 => 4x

B4=1024 => 10x

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Locality-aware concurrent search

tree: DeltaTree [Sigmetrics’15]

 A novel relaxed cache-oblivious model based on the
cache-oblivious model, but suitable for high-
concurrency algorithms

 We transform the van Emde Boas (vEB) layout for
search trees into a novel concurrency-aware vEB layout
 The layout benefits concurrent updates, unlike the original

vEB layout

 We devise DeltaTree, a novel practical locality-aware
concurrent search tree
 DeltaTree search, Insert & Delete: O(logBN) I/O complexity,

where B is unknown, but upper bound (UB) is known

12Euro-Par 2016 (Aug. 22-26), Greenoble, France

DeltaTree structure

13Euro-Par 2016 (Aug. 22-26), Greenoble, France

DeltaTree is energy-efficient [PPoPP’16]

 Through experiments we documented the energy
efficiency and throughput of DeltaTree and other state-
of-the-art trees:
1. CBTree, prominent locality-aware concurrent B+tree [6]

2. BSTTK, portably scalable concurrent search tree [7]

3. LFBST, non-blocking binary search tree [8]

 DeltaTree energy-efficiency is better than state-of-the-
art for the search-intensive workloads by up to 24%

14Euro-Par 2016 (Aug. 22-26), Greenoble, France

[6] Lehman, P.L., Yao, s.B.: Efficient locking for concurrent operations on b-trees. ACM Trans. Database Syst. 6(4), 650–670 (Dec 1981)
[7] David, T., Guerraoui, R., Trigonakis, V.: Asynchronized concurrency: The secret to scaling concurrent search data structures. In:
Proc. 12th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems. pp.
631–644. ASPLOS ’15 (2015)
[8] Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: Proc. 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. pp. 317–328. PPoPP ’14 (2014)

However, …

 DeltaTree’s energy efficiency and throughput is low in
the update-intensive workloads

 Overhead of DeltaTree’s maintenance operations

15Euro-Par 2016 (Aug. 22-26), Greenoble, France

DeltaTree maintenance operation

 Rebalance, a maintenance operation that is required to
keep DeltaTree in a good shape
 Low height

 Space saving

 However, this is DeltaTree’s biggest operational
overhead because it rearranges the whole UB-sized
tree (DeltaNode)

16Euro-Par 2016 (Aug. 22-26), Greenoble, France

GreenBST

17Euro-Par 2016 (Aug. 22-26), Greenoble, France

GreenBST

 We devised GreenBST, a new fine-grained locality
aware concurrent tree

 GreenBST is based on DeltaTree with two significant
improvements:

1. We reduce the DeltaTree memory footprint by using
heterogeneous tree layout

2. We reduce the number of memory transfer in DeltaTree
maintenance operations

18Euro-Par 2016 (Aug. 22-26), Greenoble, France

1) Heterogeneous tree layout

 All DeltaTree’s UB-sized nodes are using the leaf
oriented (or external tree) layout
 All keys are at the leaves

 Size is 2 x # of keys

 Required to link to other nodes

19Euro-Par 2016 (Aug. 22-26), Greenoble, France

1) Heterogeneous tree layout (cont.)

Non-leaf oriented /
internal tree layout

Leaf oriented /
external tree layout

20Euro-Par 2016 (Aug. 22-26), Greenoble, France

Tree filled with 1, 2, … , 7 keys

1) Heterogeneous tree layout (cont.)

 However, the leaf UB nodes do not need to link to other
nodes

 Use the internal tree layout

 Less memory transfer

during rebalancing

 Save 25% of space

 Faster search

21Euro-Par 2016 (Aug. 22-26), Greenoble, France

2) Incremental rebalance

 We define: density(w)= #of keys inside
subtree rooted at w/max. keys inside the

subtree

 Density is calculated after insertion and back-tracks to
predecessor nodes

 For example, a subtree w with height 3 and is only filled with
3 keys, then density(w) = 3/(23 – 1) = 0.42

 There is also a density threshold 0 < Γ1 < Γ2 < … < ΓH ,
where H is the tree height

 We only rebalance a subtree w, where density(w) ≤
Γdepth(w), following [9]

22Euro-Par 2016 (Aug. 22-26), Greenoble, France

[9] Brodal, G.S., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary trees of small height. In: Proc. 13th ACM-SIAM Symp.
Discrete algorithms. pp. 39–48. SODA ’02 (2002)

2) Incremental rebalance (cont.)

23Euro-Par 2016 (Aug. 22-26), Greenoble, France

Newly inserted node
w

w
height

w
depth

rebalance

EVALUATION

24Euro-Par 2016 (Aug. 22-26), Greenoble, France

Evaluation setup

 We measured the energy efficiency and throughput of
operations of several state-of-the art trees on multiple
architectures

25Euro-Par 2016 (Aug. 22-26), Greenoble, France

Algorithm Description Published

SVEB Conventional vEB layout search tree SODA’02

CBTree Concurrent B-tree (B-link tree) TODS’81

Citrus RCU-based search tree PODC’14

LFBST Non-blocking binary search tree PPoPP’14

BSTTK Portably scalable concurrent search tree ASPLOS’15

DeltaTree Locality aware concurrent search tree -

GreenBST Improved locality aware concurrent search tree -

Evaluation setup (cont.)

 Platforms used:

 HPC platform (24 core 2× Intel Xeon E5-2650Lv3 CPU with
64GB of RAM)

 ARM platform (8 core Odroid XU+E, Samsung Exynos 5410
CPU with 2GB of RAM)

 MIC platform (with 57 core Intel Xeon Phi 31S1P with 6GB of
RAM)

We run 5 million operations with 100% and 50% search
after initial loading

26Euro-Par 2016 (Aug. 22-26), Greenoble, France

Energy efficiency (HPC platform)

27

49%

50%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

20%

2.4X

Throughput (HPC platform)

28

100% Search 50% Search

42%
40%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

2.2X

20%

Energy efficiency (ARM platform)

29

61% 65%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

10% 3X

Throughput (ARM platform)

30

100% Search 50% Search

54%

69%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

15% 3X

Energy efficiency (MIC platform)

31

67%

50%

15%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

15%

2X

Throughput (MIC platform)

32

100% Search 50% Search

54%

69%

5%

53%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

15%
75%

LLC-DRAM data transfer on the HPC

platform

33

GreenBST transfers less data from/to DRAM than the other trees

1/8x

Euro-Par 2016 (Aug. 22-26), Greenoble, France

HPC Platform: The tree memory footprint

after the initial loading into memory

 GreenBST size 0.4x of BSTTK

 However, I/O can be 0.12x (i.e., GreenBST vs BSTTK in 100%
search using 57 cores)

 GreenBST re-uses more data than the other trees

34Euro-Par 2016 (Aug. 22-26), Greenoble, France

LLC-DRAM data transfer on the HPC platform

(normalized, relative to the tree memory

footprint)

35Euro-Par 2016 (Aug. 22-26), Greenoble, France

L2 cache miss on the MIC platform

36

GreenBST has fewer L2 misses than the other trees, except SVEB

when using single core

1/2x

Euro-Par 2016 (Aug. 22-26), Greenoble, France

Vacation benchmark from Stanford

STAMP [12]

37

42%

GreenBST needs 42% less time to finish the benchmark and 41% less

energy to finish the benchmark

41%

Euro-Par 2016 (Aug. 22-26), Greenoble, France

[12] Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional applications for multi-processing. In:
Workload Characterization, 2008. IISWC 2008. IEEE International Symposium on. pp. 35–46 (Sept 2008)

CONCLUSION

38Euro-Par 2016 (Aug. 22-26), Greenoble, France

Conclusions

 GreenBST is the first portable energy-efficient
concurrent search tree (see paper for the source code link)

 There are tradeoffs for using cache-obliviousness in
data structures:

1. On multi-CPU and many cores systems, data-structures’ locality-
awareness can easily saturates the CPU interconnect bandwidth (e.g.,
Xeon’s QPI and MIC’s ring interconnect)

1. Higher interconnect bandwidth or novel data access pattern
strategies for the cache-oblivious data structures for multi-CPU and
many cores systems are needed

1. Otherwise, multi-CPU coherency mechanism energy overhead can
exceed the energy saving obtained by fewer data movements.

39

13

Euro-Par 2016 (Aug. 22-26), Greenoble, France

THANK YOU

40Euro-Par 2016 (Aug. 22-26), Greenoble, France

