UiT

THE ARCTIC UNIVERSITY OF NORWAY

Power Models Supporting Energy-Efficient Co-Design on Ultra-Low Power Embedded Systems

Vi Ngoc-Nha Tran¹, Brendan Barry², Phuong Ha¹

¹ Department of Computer Science, UiT The Arctic University of Norway

² Movidius Ltd., Ireland

What are energy/power models for?

- Predict how much energy a computing system consumes
- □ Provide the understanding how a computing system consumes energy/power
- ☐ Give hints on designing and implementing algorithms/ platforms to improve energy efficiency

Why do we need new power models for ULP systems?

- ☐ Ultra-low power (ULP) embedded systems
 - Have Different architectures from the high-performance systems (e.g., CPU and GPU)
 - Have low energy per instruction and require more accurate finegrained modelling approaches
 - Have low static power, do not support DVFS but can turn on/off individual core

However

There is no available power model that provides insights into how a given application running on an ULP embedded system consumes power

Contributions

We propose RTHpower models that:

- ☐ Support co-design on ULP systems by considering:
 - platform properties,
 - application properties (e.g., operational intensity and scalability)
 - execution settings (e.g., the number of cores executing a given application)
- Built and validated with
 - Movidius platform
 - Application kernels (i.e., Matmul, SpMV and BFS)
 - Accuracy 8.5% for micro-benchmarks and 12% for application kernels
- Support predicting race-to-halt (RTH) effect for a given application

Outline

- Motivations
- Contributions
- ☐ Movidius Myriad an ULP embedded system
- □ RTHpower models
- Model validation
- ☐ Predicting RTH effect
- □ Conclusion

Movidius Myriad – an ULP Embedded System

- ☐ Different architecture from the general-purpose architectures
- Energy per instruction as low as a few pJ
- Not support DVFS features, power on/off individual cores
- Difficult to program

RTHpower Models

- □ RTHpower model for Myriad platform
- □ RTHpower model for applications
 - Longer computation time than data transfer time
 - Shorter computation time than data transfer time

RTHpower Model for Myriad Platform

$$\begin{split} P^{units} &= P^{sta} + n \times \left(P^{act} + \sum_i P_i^{dyn}(op) \right) \\ P^{sta} &= 62.125 \text{ mW} \\ P^{act} &= 30 \text{ mW} \end{split}$$

Operation	Description	$P^{dyn}\ (\mathrm{mW})$
SAUXOR	Perform bitwise exclusive-OR on scalar	15
SAUMUL	Perform scalar multiplication	18
VAUXOR	Perform bitwise exclusive-OR on vector	35.6
VAUMUL	Perform vector multiplication	52.6
IAUXOR	Perform bitwise exclusive-OR on integer	15
IAUMUL	Perform integer multiplication	21
CMUCPSS	Copy scalar to scalar	20
CMUCPIVR	Copy integer to vector	13
LSULOAD	Load from a memory address to a register	28
LSUSTORE	Store from a register to a memory address	37

RTHpower Power Model for Applications

■ When computation time is longer than data transfer time

 α : time ratio of data transfer to computation

Data transfer: $\alpha \times Q$

Data transfer: α x Q

■ The power model when computation time is longer

$$P = P^{comp||data} \times (\frac{\alpha \times Q}{W}) + P^{comp} \times (\frac{W - \alpha \times Q}{W})$$

RTHpower Power Model for Applications

■ When computation time is **shorter** than data transfer time

Computation: W

Data transfer: α x Q

■ The power model when computation time is shorter

$$P = P^{comp||data} \times (\frac{W}{\alpha \times Q}) + P^{data} \times (\frac{\alpha \times Q - W}{\alpha \times Q})$$

RTHpower Power Model for Applications

lacksquare With operational intensity $I=rac{W}{Q}$ [1], the models are derived as

$$P = P^{comp||data} \times (\frac{I}{\alpha}) + P^{data} \times (\frac{\alpha - I}{\alpha})$$

$$P = P^{comp||data} \times (\frac{\alpha}{I}) + P^{comp} \times (\frac{I - \alpha}{I})$$

Experimental Study

- □ Design 35 micro-benchmarks (i.e., operation-unit suite (26) and intensity-based suite (9))
- ☐ Use external multi-meters to measure the power consumption of the Movidius Myriad platform

☐ Train the model with measured power data from running micro-benchmarks with 1, 2 cores and validate with data from 4, 8 cores

RTHpower Model for Myriad Platform

- Operation-unit micro-benchmarks:execute only operation units (e.g., SAU, IAU, VAU)
- ☐ The absolute percentage errors of unit-suite micro-benchmarks are at most 8.5%

RTHpower Model for Applications – Microbenchmarks

- 9 Intensity-based micro-benchmarks:
 execute both arithmetic units (e.g., SAU) and
 data transfer units (e.g., LSU)
 - Operational Intensity: operations per bye [1]
 - ☐ The ratio of the number of SAU isntructions to the number of LSU instructions define intensity value
- ☐ The absolute percentage errors of model fitting for intensity-suite are at most 7%

RTHpower Model for Applications - Application Benchmarks

Kernel	Error
SpMV	4%
Matmul	12%
BFS	3%

Outline

- Motivations
- Contributions
- Movidius Myriad an ULP embedded system
- RTHpower models
- Model validation
- ☐ Predicting RTH effect
- □ Conclusion

Predicting RTH Effect – Micro-benchmarks

- ☐ Three micro-benchmarks with intensity I=0.25
 - 100% parallel: loop 1000000 times for
 1 core and loop 125000 times for 8
 cores
 - 60% parallel: loop 1000000 times for
 1 core and 475000 times for 8 cores
 - Small-size: high overhead
- ☐ They have speed-up less than platform power-up
- □ RTH is not an energy-saving strategy for these micro-benchmarks

Predicting RTH Effect - Applications

Kernel	Energy-saving
SpMV	Up to 61% by using RTH
Matmul	Up to 59% by using RTH
BFS	Up to 23% by using RTH and 5% by not using RTH

Conclusion

- □ RTHpower models provide insights into how an application consumes energy when executing on an ultra-low power (ULP) embedded system.
- □ RTHpower models support architecture-application co-design by considering platform, setting and application properties.
- Race-to-halt strategy is not always true on ULP systems and RTHpower models support predicting RTH effect for a given application.

Q&A

Thank you!

RTHpower Power Model for Applications

Model Validation - RTHpower Power Model for Applications

RTHpower Power Model for Applications

☐ If computation time is longer than data transfer time

$$P = P^{comp||data} \times (\frac{\alpha \times Q}{W}) + P^{comp} \times (\frac{W - \alpha \times Q}{W})$$

☐ If computation time is shorter than data transfer time

$$P = P^{comp||data} \times (\frac{W}{\alpha \times Q}) + P^{data} \times (\frac{\alpha \times Q - W}{\alpha \times Q})$$

 \square With $I = \frac{W}{Q}$ [1] , the models are derived as

$$P = P^{comp||data} \times (\frac{I}{\alpha}) + P^{data} \times (\frac{\alpha - I}{\alpha})$$

$$P = P^{comp||data} \times (\frac{\alpha}{I}) + P^{comp} \times (\frac{I - \alpha}{I})$$

[1] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52, 4 (April 2009), 65-76.

Predicting RTH Effect - Applications

Kernel	Energy-saving
SpMV	Up to 61% using RTH
Matmul	Up to 59% using RTH
BFS	Up to 23% using RTH and 5% by not using RTH