New collaboration article between the Nova and Skúlason groups

Abstract
Metal–organic frameworks (MOFs) show great prospect as catalysts and catalyst support materials. Yet, studies that address their dynamic, kinetic, and mechanistic role in target reactions are scarce. In this study, an exceptionally stable MOF catalyst consisting of Pt nanoparticles (NPs) embedded in a Zr-based UiO-67 MOF was subject to steady-state and transient kinetic studies involving H/D and 13C/12C exchange, coupled with operando infrared spectroscopy and density functional theory (DFT) modeling, targeting methanol formation from CO2/H2 feeds at 170 °C and 1–8 bar pressure. The study revealed that methanol is formed at the interface between the Pt NPs and defect Zr nodes via formate species attached to the Zr nodes. Methanol formation is mechanistically separated from the formation of coproducts CO and methane, except for hydrogen activation on the Pt NPs. Careful analysis of transient data revealed that the number of intermediates was higher than the number of open Zr sites in the MOF lattice around each Pt NP. Hence, additional Zr sites must be available for formate formation. DFT modeling revealed that Pt NP growth is sufficiently energetically favored to enable displacement of linkers and creation of open Zr sites during pretreatment. However, linker displacement during formate formation is energetically disfavored, in line with the excellent catalyst stability observed experimentally. Overall, the study provides firm evidence that methanol is formed at the interface of Pt NPs and linker-deficient Zr6O8 nodes resting on the Pt NP surface.

Read at:

For a list of publications by the members of NordCO2, see our Publications page!

New Research article from the Nova group

Abstract
The catalytic hydrogenation of amides is an atom economical method to synthesize amines. Previously, it was serendipitously discovered that the combination of a secondary amide co-catalyst with (iPrPNP)Fe(H)(CO) (iPrPNP = N[CH2CH2(PiPr2)]2), results in a highly active base metal system for deaminative amide hydrogenation. Here, we use DFT to develop an improved co-catalyst for amide hydrogenation. Initially, we computationally evaluated the ability of a series of co-catalysts to accelerate the turnover-limiting proton transfer during C–N bond cleavage and poison the (iPrPNP)Fe(H)(CO) catalyst through a side reaction. TBD (triazabicyclodecene) was identified as the leading co-catalyst. It was experimentally confirmed that when TBD is combined with (iPrPNP)Fe(H)(CO) a remarkably active system for amide hydrogenation is generated. TBD also enhances the activity of other catalysts for amide hydrogenation and our results provide guidelines for the rational design of future co-catalysts.

Read at:

For a list of publications by the members of NordCO2, see our Publications page!

New article from the Hopmann/Bayer group

Abstract
A range of hitherto unexplored biomass‐derived chemicals have been evaluated as new sustainable solvents for a large variety of CO2‐based carboxylation reactions. Known biomass‐derived solvents (biosolvents) are also included in the study and the results are compared with commonly used solvents for the reactions. Biosolvents can be efficiently applied in a variety of carboxylation reactions, such as Cu‐catalyzed carboxylation of organoboranes and organoboronates, metal‐catalyzed hydrocarboxylation, borocarboxylation, and other related reactions. For many of these reactions, the use of biosolvents provides comparable or better yields than the commonly used solvents. The best biosolvents identified are the so far unexplored candidates isosorbide dimethyl ether, acetaldehyde diethyl acetal, rose oxide, and eucalyptol, alongside the known biosolvent 2‐methyltetrahydrofuran. This strategy was used for the synthesis of the commercial drugs Fenoprofen and Flurbiprofen.

Read at:

For a list of publications by the members of NordCO2, see our Publications page!

Open position on CO2 conversion

A one year researcher position in electrocatalytic CO2 reduction is now opening at the University of Bergen (Norway). You can apply here until the 29th of January.

New research article by the Hopmann/Bayer group

Abstract
The copper-NHC-catalyzed carboxylation of organoboranes with CO2 was investigated using computational and experimental methods. The DFT and DLPNO-CCSD(T) results indicate that nonbenzylic substrates are converted via an inner-sphere carboxylation of an organocopper intermediate, whereas benzylic substrates may simultaneously proceed along both inner- and outer-sphere CO2 insertion pathways. Interestingly, the computations predict that two conceptually different carboxylation mechanisms are possible for benzylic organoboranes, one being copper-catalyzed and one being mediated by the reaction additive CsF. Our experimental evaluation of the computed reactions confirms that carboxylation of nonbenzylic substrates requires copper catalysis, whereas benzylic substrates can be carboxylated with and without copper.

Read at:

For a list of publications by the members of NordCO2, see our Publications page!