For individual publications of participating researchers see their hompages (under PIs).

2021
Atrak, N., Tayyebi, E., & Skúlason, E. (2021). Effect of co-adsorbed water on electrochemical CO2 reduction reaction on transition metal oxide catalysts. Applied Surface Science, 570, 151031. https://doi.org/10.1016/j.apsusc.2021.151031
Queyriaux, N., Esmieu, C., Gupta, A. K., Vendier, L., Ott, S., Orio, M., & Hammarström, L. (2021). Electrochemical, Spectroscopic, and Computational Investigation of a Series of Polypyridyl Ruthenium(II) Complexes: Characterization of Reduced States. European Journal of Inorganic Chemistry, 2021(13), 1263–1270. https://doi.org/10.1002/ejic.202001165
Mannisto, J. K., Pavlovic, L., Tiainen, T., Nieger, M., Sahari, A., Hopmann, K. H., & Repo, T. (2021). Mechanistic insights into carbamate formation from CO2 and amines: the role of guanidine–CO2 adducts. Catalysis Science & Technology. https://doi.org/10.1039/D1CY01433A
Xu, Z., Liu, D., Yu, H., Ahlquist, M. S. G., & Fu, Y. (2021). Mechanistic study on the photo carboxylation of benzylic C-H bonds by xanthone and Ni(0) catalysts. Molecular Catalysis, 514, 111785. https://doi.org/10.1016/j.mcat.2021.111785
Jakobsen, J. B., Rønne, M. H., Daasbjerg, K., & Skrydstrup, T. (2021). Are Amines the Holy Grail for Facilitating CO2 Reduction? https://doi.org/10.1002/anie.202014255
Pavlovic, L., Pettersen, M., Gevorgyan, A., Vaitla, J., Bayer, A., & Hopmann, K. H. (2021). Computational and Experimental Insights into Asymmetric Rh-Catalyzed Hydrocarboxylation with CO2. European Journal of Organic Chemistry, 2021(4), 663–670. https://doi.org/10.1002/ejoc.202001469
Pedersen, S. S., Donslund, A. S., Mikkelsen, J. H., Bakholm, O. S., Papp, F., Jensen, K. B., Gustafsson, M. B. F., & Skrydstrup, T. (2021). A Nickel(II)-Mediated Thiocarbonylation Strategy for Carbon Isotope Labeling of Aliphatic Carboxamides. Chemistry – A European Journal, 27(24), 7114–7123. https://doi.org/10.1002/chem.202005261
Jia, X., Kramer, S., Skrydstrup, T., & Lian, Z. (2021). Design and Applications of a SO2 Surrogate in Palladium-Catalyzed Direct Aminosulfonylation between Aryl Iodides and Amines. Angewandte Chemie International Edition, 60(13), 7353–7359. https://doi.org/10.1002/anie.202014111
Xu, Y., Shao, Y., Ahlquist, M. S. G., Yu, H., & Fu, Y. (2021). Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation. The Journal of Organic Chemistry, 86(2), 1540–1548. https://doi.org/10.1021/acs.joc.0c02393
Laurans, M., Wells, J. A. L., & Ott, S. (2021). Immobilizing molecular Ru complexes on a protective ultrathin oxide layer of p-Si electrodes towards photoelectrochemical CO2 reduction. Dalton Transactions. https://doi.org/10.1039/D1DT01331A
2020
Donslund, A. S., Pedersen, S. S., Gaardbo, C., Neumann, K. T., Kingston, L., Elmore, C. S., & Skrydstrup, T. (2020). Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angewandte Chemie International Edition, 59(21), 8099–8103. https://doi.org/10.1002/anie.201916391
Rønne, M. H., Cho, D., Madsen, M. R., Jakobsen, J. B., Eom, S., Escoudé, É., Hammershøj, H. C. D., Nielsen, D. U., Pedersen, S. U., Baik, M.-H., Skrydstrup, T., & Daasbjerg, K. (2020). Ligand-Controlled Product Selectivity in Electrochemical Carbon Dioxide Reduction Using Manganese Bipyridine Catalysts. Journal of the American Chemical Society, 142(9), 4265–4275. https://doi.org/10.1021/jacs.9b11806
Suàrez, L. A., Jayarathne, U., Balcells, D., Bernskoetter, W. H., Hazari, N., Jaraiz, M., & Nova, A. (2020). Rational selection of co-catalysts for the deaminative hydrogenation of amides. Chemical Science, 11(8), 2225–2230. https://doi.org/10.1039/C9SC03812D
Gutterød, E. S., Lazzarini, A., Fjermestad, T., Kaur, G., Manzoli, M., Bordiga, S., Svelle, S., Lillerud, K. P., Skúlason, E., Øien-Ødegaard, S., Nova, A., & Olsbye, U. (2020). Hydrogenation of CO2 to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal–Organic Framework. Journal of the American Chemical Society, 142(2), 999–1009. https://doi.org/10.1021/jacs.9b10873
Madsen, M. R., Jakobsen, J. B., Rønne, M. H., Liang, H., Hammershøj, H. C. D., Nørby, P., Pedersen, S. U., Skrydstrup, T., & Daasbjerg, K. (2020). Evaluation of the Electrocatalytic Reduction of Carbon Dioxide using Rhenium and Ruthenium Bipyridine Catalysts Bearing Pendant Amines in the Secondary Coordination Sphere. Organometallics, 39(9), 1480–1490. https://doi.org/10.1021/acs.organomet.9b00815
Obst, M. F., Gevorgyan, A., Bayer, A., & Hopmann, K. H. (2020). Mechanistic Insights into Copper-Catalyzed Carboxylations. Organometallics, 39(9), 1545–1552. https://doi.org/10.1021/acs.organomet.9b00710
Gevorgyan, A., Hopmann, K. H., & Bayer, A. (2020). Exploration of New Biomass-Derived Solvents: Application to Carboxylation Reactions. ChemSusChem, 13(8), 2080–2088. https://doi.org/10.1002/cssc.201903224
Gevorgyan, A., Hopmann, K. H., & Bayer, A. (2020). Formal C−H Carboxylation of Unactivated Arenes. Chemistry – A European Journal, 26(27), 6064–6069. https://doi.org/10.1002/chem.202000515
Ismael, A., Skrydstrup, T., & Bayer, A. (2020). Carbonylative Suzuki–Miyaura couplings of sterically hindered aryl halides: synthesis of 2-aroylbenzoate derivatives. Organic & Biomolecular Chemistry, 18(9), 1754–1759. https://doi.org/10.1039/D0OB00044B
Queyriaux, N., Abel, K., Fize, J., Pécaut, J., Orio, M., & Hammarström, L. (2020). From non-innocent to guilty: on the role of redox-active ligands in the electro-assisted reduction of CO2 mediated by a cobalt(II)-polypyridyl complex. Sustainable Energy & Fuels, 4(7), 3668–3676. https://doi.org/10.1039/D0SE00570C
Johansen, M. B., Gedde, O. R., Mayer, T. S., & Skrydstrup, T. (2020). Access to Aryl and Heteroaryl Trifluoromethyl Ketones from Aryl Bromides and Fluorosulfates with Stoichiometric CO. Organic Letters, 22(11), 4068–4072. https://doi.org/10.1021/acs.orglett.0c01117
Tayyebi, E., Hussain, J., & Skúlason, E. (2020). Why do RuO2 electrodes catalyze electrochemical CO2 reduction to methanol rather than methane or perhaps neither of those? Chemical Science, 11(35), 9542–9553. https://doi.org/10.1039/D0SC01882A
de Gracia Triviño, J. A., & Ahlquist, M. S. G. (2020). Oxide Relay: An Efficient Mechanism for Catalytic Water Oxidation at Hydrophobic Electrode Surfaces. The Journal of Physical Chemistry Letters, 11(17), 7383–7387. https://doi.org/10.1021/acs.jpclett.0c02009
Pedersen, S. K., Gudmundsson, H. G., Nielsen, D. U., Donslund, B. S., Hammershøj, H. C. D., Daasbjerg, K., & Skrydstrup, T. (2020). Main element chemistry enables gas-cylinder-free hydroformylations. Nature Catalysis, 3(10), 843–850. https://doi.org/10.1038/s41929-020-00510-z
Gutterød, E. S., Pulumati, S. H., Kaur, G., Lazzarini, A., Solemsli, B. G., Gunnæs, A. E., Ahoba-Sam, C., Kalyva, M. E., Sannes, J. A., Svelle, S., Skúlason, E., Nova, A., & Olsbye, U. (2020). Influence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework. Journal of the American Chemical Society, 142(40), 17105–17118. https://doi.org/10.1021/jacs.0c07153
Somerville, R. J., Odena, C., Obst, M. F., Hazari, N., Hopmann, K. H., & Martin, R. (2020). Ni(I)–Alkyl Complexes Bearing Phenanthroline Ligands: Experimental Evidence for CO2 Insertion at Ni(I) Centers. Journal of the American Chemical Society, 142(25), 10936–10941. https://doi.org/10.1021/jacs.0c04695
Li, X., Xu, J., Li, Y., Kramer, S., Skrydstrup, T., & Lian, Z. (2020). Silylcarboxylic Acids as Bifunctional Reagents: Application in Palladium-Catalyzed External-CO-Free Carbonylative Cross-Coupling Reactions. Advanced Synthesis & Catalysis, 362(19), 4078–4083. https://doi.org/10.1002/adsc.202000586
Ravn, A. K., Johansen, M. B., & Skrydstrup, T. (2020). Controlled Release of Reactive Gases: A Tale of Taming Carbon Monoxide. ChemPlusChem, 85(7), 1529–1533. https://doi.org/10.1002/cplu.202000319
Nie, W., Shao, Y., Ahlquist, M. S. G., Yu, H., & Fu, Y. (2020). Mechanistic study on the regioselective Ni-catalyzed dicarboxylation of 1,3-dienes with CO2. Organic Chemistry Frontiers, 7(24), 4080–4088. https://doi.org/10.1039/D0QO01173H
Ismael, A., Gevorgyan, A., Skrydstrup, T., & Bayer, A. (2020). Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Organic Process Research & Development, 24(11), 2665–2675. https://doi.org/10.1021/acs.oprd.0c00325
García-López, D., Pavlovic, L., & Hopmann, K. H. (2020). To Bind or Not to Bind: Mechanistic Insights into C–CO2 Bond Formation with Late Transition Metals. Organometallics, 39(8), 1339–1347. https://doi.org/10.1021/acs.organomet.0c00090
Domino, K., Johansen, M. B., Daasbjerg, K., & Skrydstrup, T. (2020). Stoichiometric Studies on the Carbonylative Trifluoromethylation of Aryl Pd(II) Complexes using TMSCF3 as the Trifluoromethyl Source. Organometallics, 39(5), 688–697. https://doi.org/10.1021/acs.organomet.9b00849
Chen, X., Hu, X.-M., Daasbjerg, K., & Ahlquist, M. S. G. (2020). Understanding the Enhanced Catalytic CO2 Reduction upon Adhering Cobalt Porphyrin to Carbon Nanotubes and the Inverse Loading Effect. Organometallics, 39(9), 1634–1641. https://doi.org/10.1021/acs.organomet.9b00726
Chen, X., & Ahlquist, M. S. G. (2020). Deconstructing the Enhancing Effect on CO2 Activation in the Electric Double Layer with EVB Dynamic Reaction Modeling. The Journal of Physical Chemistry C, 124(41), 22479–22487. https://doi.org/10.1021/acs.jpcc.0c05974
2019

Annual Report: https://site.uit.no/nordco2/files/2020/12/Annual-Report-2019.pdf

Vaitla, J., Bayer, A., & Hopmann, K. H. (2019). Vinyl Sulfoxonium Ylide: A New Vinyl Carbenoid Transfer Reagent for the Synthesis of Heterocycles. Synlett, 30(12), 1377–1383. https://doi.org/10.1055/s-0037-1611771
Vaitla, J., & Bayer, A. (2019). Sulfoxonium Ylide Derived Metal Carbenoids in Organic Synthesis. Synthesis, 51(03), 612–628. https://doi.org/10.1055/s-0037-1610328
Pascanu, V., González Miera, G., Inge, A. K., & Martín-Matute, B. (2019). Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. Journal of the American Chemical Society, 141(18), 7223–7234. https://doi.org/10.1021/jacs.9b00733
Queyriaux, N., Swords, W. B., Agarwala, H., Johnson, B. A., Ott, S., & Hammarström, L. (2019). Mechanistic insights on the non-innocent role of electron donors: reversible photocapture of CO2 by RuII-polypyridyl complexes. Dalton Transactions, 48(45), 16894–16898. https://doi.org/10.1039/C9DT03461G
Xin, Z., & Skrydstrup, T. (2019). Liquid Marbles: A Promising and Versatile Platform for Miniaturized Chemical Reactions. Angewandte Chemie International Edition, 58(35), 11952–11954. https://doi.org/10.1002/anie.201905204
Ravn, A. K., Vilstrup, M. B. T., Noerby, P., Nielsen, D. U., Daasbjerg, K., & Skrydstrup, T. (2019). Carbon Isotope Labeling Strategy for β-Amino Acid Derivatives via Carbonylation of Azanickellacycles. Journal of the American Chemical Society, 141(30), 11821–11826. https://doi.org/10.1021/jacs.9b05934
Collin, H. P., Reis, W. J., Nielsen, D. U., Lindhardt, A. T., Valle, M. S., Freitas, R. P., & Skrydstrup, T. (2019). COtab: Expedient and Safe Setup for Pd-Catalyzed Carbonylation Chemistry. Organic Letters, 21(15), 5775–5778. https://doi.org/10.1021/acs.orglett.9b01423
Carrasco, S., Sanz-Marco, A., & Martín-Matute, B. (2019). Fast and Robust Synthesis of Metalated PCN-222 and Their Catalytic Performance in Cycloaddition Reactions with CO2. Organometallics, 38(18), 3429–3435. https://doi.org/10.1021/acs.organomet.9b00273
Donslund, A. S., Neumann, K. T., Corneliussen, N. P., Grove, E. K., Herbstritt, D., Daasbjerg, K., & Skrydstrup, T. (2019). Access to β-Ketonitriles through Nickel-Catalyzed Carbonylative Coupling of α-Bromonitriles with Alkylzinc Reagents. Chemistry – A European Journal, 25(42), 9856–9860. https://doi.org/10.1002/chem.201902206
Mannisto, J. K., Sahari, A., Lagerblom, K., Niemi, T., Nieger, M., Sztanó, G., & Repo, T. (2019). One-Step Synthesis of 3,4-Disubstituted 2-Oxazolidinones by Base-Catalyzed CO2 Fixation and Aza-Michael Addition. Chemistry – A European Journal, 25(44), 10284–10289. https://doi.org/10.1002/chem.201902451
Gevorgyan, A., Obst, M. F., Guttormsen, Y., Maseras, F., Hopmann, K. H., & Bayer, A. (2019). Caesium fluoride-mediated hydrocarboxylation of alkenes and allenes: scope and mechanistic insights. Chemical Science, 10(43), 10072–10078. https://doi.org/10.1039/C9SC02467K
Leischner, T., Suarez, L. A., Spannenberg, A., Junge, K., Nova, A., & Beller, M. (2019). Highly selective hydrogenation of amides catalysed by a molybdenum pincer complex: scope and mechanism. Chemical Science, 10(45), 10566–10576. https://doi.org/10.1039/C9SC03453F
2018

Annual report: https://site.uit.no/nordco2/2019/03/04/nordco2-annual-report/

Obst, M., Pavlovic, L., & Hopmann, K. H. (2018). Carbon-carbon bonds with CO2: Insights from computational studies. Journal of Organometallic Chemistry, 864, 115–127. https://doi.org/10.1016/j.jorganchem.2018.02.020
Pavlovic, L., Vaitla, J., Bayer, A., & Hopmann, K. H. (2018). Rhodium-Catalyzed Hydrocarboxylation: Mechanistic Analysis Reveals Unusual Transition State for Carbon–Carbon Bond Formation. Organometallics, 37(6), 941–948. https://doi.org/10.1021/acs.organomet.7b00899
Vaitla, J., Bayer, A., & Hopmann, K. H. (2018). Iron-Catalyzed Carbenoid-Transfer Reactions of Vinyl Sulfoxonium Ylides: An Experimental and Computational Study. Angewandte Chemie International Edition, 57(49), 16180–16184. https://doi.org/10.1002/anie.201810451
Artús Suàrez, L., Culakova, Z., Balcells, D., Bernskoetter, W. H., Eisenstein, O., Goldberg, K. I., Hazari, N., Tilset, M., & Nova, A. (2018). The Key Role of the Hemiaminal Intermediate in the Iron-Catalyzed Deaminative Hydrogenation of Amides. ACS Catalysis, 8(9), 8751–8762. https://doi.org/10.1021/acscatal.8b02184
Niemi, T., Fernández, I., Steadman, B., Mannisto, J. K., & Repo, T. (2018). Carbon dioxide-based facile synthesis of cyclic carbamates from amino alcohols. Chemical Communications, 54(25), 3166–3169. https://doi.org/10.1039/C8CC00636A
Johnson, B. A., Bhunia, A., Fei, H., Cohen, S. M., & Ott, S. (2018). Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. Journal of the American Chemical Society, 140(8), 2985–2994. https://doi.org/10.1021/jacs.7b13077
Huang, J., Gatty, M. G., Xu, B., Pati, P. B., Etman, A. S., Tian, L., Sun, J., Hammarström, L., & Tian, H. (2018). Covalently linking CuInS2 quantum dots with a Re catalyst by click reaction for photocatalytic CO2 reduction. Dalton Transactions, 47(31), 10775–10783. https://doi.org/10.1039/C8DT01631C
Hu, X.-M., Hval, H. H., Bjerglund, E. T., Dalgaard, K. J., Madsen, M. R., Pohl, M.-M., Welter, E., Lamagni, P., Buhl, K. B., Bremholm, M., Beller, M., Pedersen, S. U., Skrydstrup, T., & Daasbjerg, K. (2018). Selective CO2 Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts. ACS Catalysis, 8(7), 6255–6264. https://doi.org/10.1021/acscatal.8b01022
Marcos, R., Bertini, F., Rinkevicius, Z., Peruzzini, M., Gonsalvi, L., & Ahlquist, M. S. G. (2018). Mechanistic Studies on NaHCO3 Hydrogenation and HCOOH Dehydrogenation Reactions Catalysed by a FeII Linear Tetraphosphine Complex. Chemistry – A European Journal, 24(20), 5366–5372. https://doi.org/10.1002/chem.201704927
2017
Vaitla, J., Guttormsen, Y., Mannisto, J. K., Nova, A., Repo, T., Bayer, A., & Hopmann, K. H. (2017). Enantioselective Incorporation of CO2: Status and Potential. ACS Catalysis, 7(10), 7231–7244. https://doi.org/10.1021/acscatal.7b02306
Abdellah, M., El-Zohry, A. M., Antila, L. J., Windle, C. D., Reisner, E., & Hammarström, L. (2017). Time-Resolved IR Spectroscopy Reveals a Mechanism with TiO2 as a Reversible Electron Acceptor in a TiO2–Re Catalyst System for CO2 Photoreduction. Journal of the American Chemical Society, 139(3), 1226–1232. https://doi.org/10.1021/jacs.6b11308