For individual publications of participating researchers see their hompages (under PIs).

2021
Madsen, M. R., Rønne, M. H., Heuschen, M., Golo, D., Ahlquist, M. S. G., Skrydstrup, T., Pedersen, S. U., & Daasbjerg, K. (2021). Promoting Selective Generation of Formic Acid from CO2 Using Mn(bpy)(CO)3Br as Electrocatalyst and Triethylamine/Isopropanol as Additives. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.1c10805
Atrak, N., Tayyebi, E., & Skúlason, E. (2021). Effect of co-adsorbed water on electrochemical CO2 reduction reaction on transition metal oxide catalysts. Applied Surface Science, 570, 151031. https://doi.org/10.1016/j.apsusc.2021.151031
Queyriaux, N., Esmieu, C., Gupta, A. K., Vendier, L., Ott, S., Orio, M., & Hammarström, L. (2021). Electrochemical, Spectroscopic, and Computational Investigation of a Series of Polypyridyl Ruthenium(II) Complexes: Characterization of Reduced States. European Journal of Inorganic Chemistry, 2021(13), 1263–1270. https://doi.org/10.1002/ejic.202001165
Mannisto, J. K., Pavlovic, L., Tiainen, T., Nieger, M., Sahari, A., Hopmann, K. H., & Repo, T. (2021). Mechanistic insights into carbamate formation from CO2 and amines: the role of guanidine–CO2 adducts. Catalysis Science & Technology. https://doi.org/10.1039/D1CY01433A
Xu, Z., Liu, D., Yu, H., Ahlquist, M. S. G., & Fu, Y. (2021). Mechanistic study on the photo carboxylation of benzylic C-H bonds by xanthone and Ni(0) catalysts. Molecular Catalysis, 514, 111785. https://doi.org/10.1016/j.mcat.2021.111785
Jakobsen, J. B., Rønne, M. H., Daasbjerg, K., & Skrydstrup, T. (2021). Are Amines the Holy Grail for Facilitating CO2 Reduction? https://doi.org/10.1002/anie.202014255
Pavlovic, L., Pettersen, M., Gevorgyan, A., Vaitla, J., Bayer, A., & Hopmann, K. H. (2021). Computational and Experimental Insights into Asymmetric Rh-Catalyzed Hydrocarboxylation with CO2. European Journal of Organic Chemistry, 2021(4), 663–670. https://doi.org/10.1002/ejoc.202001469
Pedersen, S. S., Donslund, A. S., Mikkelsen, J. H., Bakholm, O. S., Papp, F., Jensen, K. B., Gustafsson, M. B. F., & Skrydstrup, T. (2021). A Nickel(II)-Mediated Thiocarbonylation Strategy for Carbon Isotope Labeling of Aliphatic Carboxamides. Chemistry – A European Journal, 27(24), 7114–7123. https://doi.org/10.1002/chem.202005261
Jia, X., Kramer, S., Skrydstrup, T., & Lian, Z. (2021). Design and Applications of a SO2 Surrogate in Palladium-Catalyzed Direct Aminosulfonylation between Aryl Iodides and Amines. Angewandte Chemie International Edition, 60(13), 7353–7359. https://doi.org/10.1002/anie.202014111
Xu, Y., Shao, Y., Ahlquist, M. S. G., Yu, H., & Fu, Y. (2021). Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation. The Journal of Organic Chemistry, 86(2), 1540–1548. https://doi.org/10.1021/acs.joc.0c02393
Laurans, M., Wells, J. A. L., & Ott, S. (2021). Immobilizing molecular Ru complexes on a protective ultrathin oxide layer of p-Si electrodes towards photoelectrochemical CO2 reduction. Dalton Transactions. https://doi.org/10.1039/D1DT01331A
2020
Donslund, A. S., Pedersen, S. S., Gaardbo, C., Neumann, K. T., Kingston, L., Elmore, C. S., & Skrydstrup, T. (2020). Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angewandte Chemie International Edition, 59(21), 8099–8103. https://doi.org/10.1002/anie.201916391
Rønne, M. H., Cho, D., Madsen, M. R., Jakobsen, J. B., Eom, S., Escoudé, É., Hammershøj, H. C. D., Nielsen, D. U., Pedersen, S. U., Baik, M.-H., Skrydstrup, T., & Daasbjerg, K. (2020). Ligand-Controlled Product Selectivity in Electrochemical Carbon Dioxide Reduction Using Manganese Bipyridine Catalysts. Journal of the American Chemical Society, 142(9), 4265–4275. https://doi.org/10.1021/jacs.9b11806
Suàrez, L. A., Jayarathne, U., Balcells, D., Bernskoetter, W. H., Hazari, N., Jaraiz, M., & Nova, A. (2020). Rational selection of co-catalysts for the deaminative hydrogenation of amides. Chemical Science, 11(8), 2225–2230. https://doi.org/10.1039/C9SC03812D
Gutterød, E. S., Lazzarini, A., Fjermestad, T., Kaur, G., Manzoli, M., Bordiga, S., Svelle, S., Lillerud, K. P., Skúlason, E., Øien-Ødegaard, S., Nova, A., & Olsbye, U. (2020). Hydrogenation of CO2 to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal–Organic Framework. Journal of the American Chemical Society, 142(2), 999–1009. https://doi.org/10.1021/jacs.9b10873
Madsen, M. R., Jakobsen, J. B., Rønne, M. H., Liang, H., Hammershøj, H. C. D., Nørby, P., Pedersen, S. U., Skrydstrup, T., & Daasbjerg, K. (2020). Evaluation of the Electrocatalytic Reduction of Carbon Dioxide using Rhenium and Ruthenium Bipyridine Catalysts Bearing Pendant Amines in the Secondary Coordination Sphere. Organometallics, 39(9), 1480–1490. https://doi.org/10.1021/acs.organomet.9b00815
Obst, M. F., Gevorgyan, A., Bayer, A., & Hopmann, K. H. (2020). Mechanistic Insights into Copper-Catalyzed Carboxylations. Organometallics, 39(9), 1545–1552. https://doi.org/10.1021/acs.organomet.9b00710
Gevorgyan, A., Hopmann, K. H., & Bayer, A. (2020). Exploration of New Biomass-Derived Solvents: Application to Carboxylation Reactions. ChemSusChem, 13(8), 2080–2088. https://doi.org/10.1002/cssc.201903224
Gevorgyan, A., Hopmann, K. H., & Bayer, A. (2020). Formal C−H Carboxylation of Unactivated Arenes. Chemistry – A European Journal, 26(27), 6064–6069. https://doi.org/10.1002/chem.202000515
Ismael, A., Skrydstrup, T., & Bayer, A. (2020). Carbonylative Suzuki–Miyaura couplings of sterically hindered aryl halides: synthesis of 2-aroylbenzoate derivatives. Organic & Biomolecular Chemistry, 18(9), 1754–1759. https://doi.org/10.1039/D0OB00044B
Queyriaux, N., Abel, K., Fize, J., Pécaut, J., Orio, M., & Hammarström, L. (2020). From non-innocent to guilty: on the role of redox-active ligands in the electro-assisted reduction of CO2 mediated by a cobalt(II)-polypyridyl complex. Sustainable Energy & Fuels, 4(7), 3668–3676. https://doi.org/10.1039/D0SE00570C
Johansen, M. B., Gedde, O. R., Mayer, T. S., & Skrydstrup, T. (2020). Access to Aryl and Heteroaryl Trifluoromethyl Ketones from Aryl Bromides and Fluorosulfates with Stoichiometric CO. Organic Letters, 22(11), 4068–4072. https://doi.org/10.1021/acs.orglett.0c01117
Tayyebi, E., Hussain, J., & Skúlason, E. (2020). Why do RuO2 electrodes catalyze electrochemical CO2 reduction to methanol rather than methane or perhaps neither of those? Chemical Science, 11(35), 9542–9553. https://doi.org/10.1039/D0SC01882A
de Gracia Triviño, J. A., & Ahlquist, M. S. G. (2020). Oxide Relay: An Efficient Mechanism for Catalytic Water Oxidation at Hydrophobic Electrode Surfaces. The Journal of Physical Chemistry Letters, 11(17), 7383–7387. https://doi.org/10.1021/acs.jpclett.0c02009
Pedersen, S. K., Gudmundsson, H. G., Nielsen, D. U., Donslund, B. S., Hammershøj, H. C. D., Daasbjerg, K., & Skrydstrup, T. (2020). Main element chemistry enables gas-cylinder-free hydroformylations. Nature Catalysis, 3(10), 843–850. https://doi.org/10.1038/s41929-020-00510-z
Gutterød, E. S., Pulumati, S. H., Kaur, G., Lazzarini, A., Solemsli, B. G., Gunnæs, A. E., Ahoba-Sam, C., Kalyva, M. E., Sannes, J. A., Svelle, S., Skúlason, E., Nova, A., & Olsbye, U. (2020). Influence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework. Journal of the American Chemical Society, 142(40), 17105–17118. https://doi.org/10.1021/jacs.0c07153
Somerville, R. J., Odena, C., Obst, M. F., Hazari, N., Hopmann, K. H., & Martin, R. (2020). Ni(I)–Alkyl Complexes Bearing Phenanthroline Ligands: Experimental Evidence for CO2 Insertion at Ni(I) Centers. Journal of the American Chemical Society, 142(25), 10936–10941. https://doi.org/10.1021/jacs.0c04695
Li, X., Xu, J., Li, Y., Kramer, S., Skrydstrup, T., & Lian, Z. (2020). Silylcarboxylic Acids as Bifunctional Reagents: Application in Palladium-Catalyzed External-CO-Free Carbonylative Cross-Coupling Reactions. Advanced Synthesis & Catalysis, 362(19), 4078–4083. https://doi.org/10.1002/adsc.202000586
Ravn, A. K., Johansen, M. B., & Skrydstrup, T. (2020). Controlled Release of Reactive Gases: A Tale of Taming Carbon Monoxide. ChemPlusChem, 85(7), 1529–1533. https://doi.org/10.1002/cplu.202000319
Nie, W., Shao, Y., Ahlquist, M. S. G., Yu, H., & Fu, Y. (2020). Mechanistic study on the regioselective Ni-catalyzed dicarboxylation of 1,3-dienes with CO2. Organic Chemistry Frontiers, 7(24), 4080–4088. https://doi.org/10.1039/D0QO01173H
Ismael, A., Gevorgyan, A., Skrydstrup, T., & Bayer, A. (2020). Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Organic Process Research & Development, 24(11), 2665–2675. https://doi.org/10.1021/acs.oprd.0c00325
García-López, D., Pavlovic, L., & Hopmann, K. H. (2020). To Bind or Not to Bind: Mechanistic Insights into C–CO2 Bond Formation with Late Transition Metals. Organometallics, 39(8), 1339–1347. https://doi.org/10.1021/acs.organomet.0c00090
Domino, K., Johansen, M. B., Daasbjerg, K., & Skrydstrup, T. (2020). Stoichiometric Studies on the Carbonylative Trifluoromethylation of Aryl Pd(II) Complexes using TMSCF3 as the Trifluoromethyl Source. Organometallics, 39(5), 688–697. https://doi.org/10.1021/acs.organomet.9b00849
Chen, X., Hu, X.-M., Daasbjerg, K., & Ahlquist, M. S. G. (2020). Understanding the Enhanced Catalytic CO2 Reduction upon Adhering Cobalt Porphyrin to Carbon Nanotubes and the Inverse Loading Effect. Organometallics, 39(9), 1634–1641. https://doi.org/10.1021/acs.organomet.9b00726
Chen, X., & Ahlquist, M. S. G. (2020). Deconstructing the Enhancing Effect on CO2 Activation in the Electric Double Layer with EVB Dynamic Reaction Modeling. The Journal of Physical Chemistry C, 124(41), 22479–22487. https://doi.org/10.1021/acs.jpcc.0c05974
2019

Annual Report: https://site.uit.no/nordco2/files/2020/12/Annual-Report-2019.pdf

Vaitla, J., Bayer, A., & Hopmann, K. H. (2019). Vinyl Sulfoxonium Ylide: A New Vinyl Carbenoid Transfer Reagent for the Synthesis of Heterocycles. Synlett, 30(12), 1377–1383. https://doi.org/10.1055/s-0037-1611771
Vaitla, J., & Bayer, A. (2019). Sulfoxonium Ylide Derived Metal Carbenoids in Organic Synthesis. Synthesis, 51(03), 612–628. https://doi.org/10.1055/s-0037-1610328
Pascanu, V., González Miera, G., Inge, A. K., & Martín-Matute, B. (2019). Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. Journal of the American Chemical Society, 141(18), 7223–7234. https://doi.org/10.1021/jacs.9b00733
Queyriaux, N., Swords, W. B., Agarwala, H., Johnson, B. A., Ott, S., & Hammarström, L. (2019). Mechanistic insights on the non-innocent role of electron donors: reversible photocapture of CO2 by RuII-polypyridyl complexes. Dalton Transactions, 48(45), 16894–16898. https://doi.org/10.1039/C9DT03461G
Xin, Z., & Skrydstrup, T. (2019). Liquid Marbles: A Promising and Versatile Platform for Miniaturized Chemical Reactions. Angewandte Chemie International Edition, 58(35), 11952–11954. https://doi.org/10.1002/anie.201905204
Ravn, A. K., Vilstrup, M. B. T., Noerby, P., Nielsen, D. U., Daasbjerg, K., & Skrydstrup, T. (2019). Carbon Isotope Labeling Strategy for β-Amino Acid Derivatives via Carbonylation of Azanickellacycles. Journal of the American Chemical Society, 141(30), 11821–11826. https://doi.org/10.1021/jacs.9b05934
Collin, H. P., Reis, W. J., Nielsen, D. U., Lindhardt, A. T., Valle, M. S., Freitas, R. P., & Skrydstrup, T. (2019). COtab: Expedient and Safe Setup for Pd-Catalyzed Carbonylation Chemistry. Organic Letters, 21(15), 5775–5778. https://doi.org/10.1021/acs.orglett.9b01423
Carrasco, S., Sanz-Marco, A., & Martín-Matute, B. (2019). Fast and Robust Synthesis of Metalated PCN-222 and Their Catalytic Performance in Cycloaddition Reactions with CO2. Organometallics, 38(18), 3429–3435. https://doi.org/10.1021/acs.organomet.9b00273
Donslund, A. S., Neumann, K. T., Corneliussen, N. P., Grove, E. K., Herbstritt, D., Daasbjerg, K., & Skrydstrup, T. (2019). Access to β-Ketonitriles through Nickel-Catalyzed Carbonylative Coupling of α-Bromonitriles with Alkylzinc Reagents. Chemistry – A European Journal, 25(42), 9856–9860. https://doi.org/10.1002/chem.201902206
Mannisto, J. K., Sahari, A., Lagerblom, K., Niemi, T., Nieger, M., Sztanó, G., & Repo, T. (2019). One-Step Synthesis of 3,4-Disubstituted 2-Oxazolidinones by Base-Catalyzed CO2 Fixation and Aza-Michael Addition. Chemistry – A European Journal, 25(44), 10284–10289. https://doi.org/10.1002/chem.201902451
Gevorgyan, A., Obst, M. F., Guttormsen, Y., Maseras, F., Hopmann, K. H., & Bayer, A. (2019). Caesium fluoride-mediated hydrocarboxylation of alkenes and allenes: scope and mechanistic insights. Chemical Science, 10(43), 10072–10078. https://doi.org/10.1039/C9SC02467K
Leischner, T., Suarez, L. A., Spannenberg, A., Junge, K., Nova, A., & Beller, M. (2019). Highly selective hydrogenation of amides catalysed by a molybdenum pincer complex: scope and mechanism. Chemical Science, 10(45), 10566–10576. https://doi.org/10.1039/C9SC03453F
2018

Annual report: https://site.uit.no/nordco2/2019/03/04/nordco2-annual-report/

Obst, M., Pavlovic, L., & Hopmann, K. H. (2018). Carbon-carbon bonds with CO2: Insights from computational studies. Journal of Organometallic Chemistry, 864, 115–127. https://doi.org/10.1016/j.jorganchem.2018.02.020
Pavlovic, L., Vaitla, J., Bayer, A., & Hopmann, K. H. (2018). Rhodium-Catalyzed Hydrocarboxylation: Mechanistic Analysis Reveals Unusual Transition State for Carbon–Carbon Bond Formation. Organometallics, 37(6), 941–948. https://doi.org/10.1021/acs.organomet.7b00899
Vaitla, J., Bayer, A., & Hopmann, K. H. (2018). Iron-Catalyzed Carbenoid-Transfer Reactions of Vinyl Sulfoxonium Ylides: An Experimental and Computational Study. Angewandte Chemie International Edition, 57(49), 16180–16184. https://doi.org/10.1002/anie.201810451
Artús Suàrez, L., Culakova, Z., Balcells, D., Bernskoetter, W. H., Eisenstein, O., Goldberg, K. I., Hazari, N., Tilset, M., & Nova, A. (2018). The Key Role of the Hemiaminal Intermediate in the Iron-Catalyzed Deaminative Hydrogenation of Amides. ACS Catalysis, 8(9), 8751–8762. https://doi.org/10.1021/acscatal.8b02184
Niemi, T., Fernández, I., Steadman, B., Mannisto, J. K., & Repo, T. (2018). Carbon dioxide-based facile synthesis of cyclic carbamates from amino alcohols. Chemical Communications, 54(25), 3166–3169. https://doi.org/10.1039/C8CC00636A
Johnson, B. A., Bhunia, A., Fei, H., Cohen, S. M., & Ott, S. (2018). Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. Journal of the American Chemical Society, 140(8), 2985–2994. https://doi.org/10.1021/jacs.7b13077
Huang, J., Gatty, M. G., Xu, B., Pati, P. B., Etman, A. S., Tian, L., Sun, J., Hammarström, L., & Tian, H. (2018). Covalently linking CuInS2 quantum dots with a Re catalyst by click reaction for photocatalytic CO2 reduction. Dalton Transactions, 47(31), 10775–10783. https://doi.org/10.1039/C8DT01631C
Hu, X.-M., Hval, H. H., Bjerglund, E. T., Dalgaard, K. J., Madsen, M. R., Pohl, M.-M., Welter, E., Lamagni, P., Buhl, K. B., Bremholm, M., Beller, M., Pedersen, S. U., Skrydstrup, T., & Daasbjerg, K. (2018). Selective CO2 Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts. ACS Catalysis, 8(7), 6255–6264. https://doi.org/10.1021/acscatal.8b01022
Marcos, R., Bertini, F., Rinkevicius, Z., Peruzzini, M., Gonsalvi, L., & Ahlquist, M. S. G. (2018). Mechanistic Studies on NaHCO3 Hydrogenation and HCOOH Dehydrogenation Reactions Catalysed by a FeII Linear Tetraphosphine Complex. Chemistry – A European Journal, 24(20), 5366–5372. https://doi.org/10.1002/chem.201704927
2017
Vaitla, J., Guttormsen, Y., Mannisto, J. K., Nova, A., Repo, T., Bayer, A., & Hopmann, K. H. (2017). Enantioselective Incorporation of CO2: Status and Potential. ACS Catalysis, 7(10), 7231–7244. https://doi.org/10.1021/acscatal.7b02306
Abdellah, M., El-Zohry, A. M., Antila, L. J., Windle, C. D., Reisner, E., & Hammarström, L. (2017). Time-Resolved IR Spectroscopy Reveals a Mechanism with TiO2 as a Reversible Electron Acceptor in a TiO2–Re Catalyst System for CO2 Photoreduction. Journal of the American Chemical Society, 139(3), 1226–1232. https://doi.org/10.1021/jacs.6b11308